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Abstract: Oxidative stress is thought to be one of the common mechanisms for several neonatal dis-
eases in premature infants. Moreover, fat-soluble antioxidant vitamins, i.e., retinol and α-tocopherol,
have been found to be low in preterm neonates; however, data are limited. The aim of this was
to assess the circulating α-tocopherol and retinol concentrations in preterm infants at birth and
investigate if they are related to gestational age. Retinol and α-tocopherol were measured on the first
day after birth in 30 preterm neonates with HPLC. Means ± SD of serum retinol and α-tocopherol
were 392.0 ± 162.9 µg/L and 6.83 ± 3.02 mg/L, respectively. In total, 73% of infants had a very
low birth weight (<1500 g) and 23.3% were small for gestational age (SGA). Moreover, 10% of
neonates had a retinol deficiency and 20% had an α-tocopherol deficiency. The retinol concentration
was lower in SGA infants compared to appropriate for gestational age ones (340.85 ± 75.89 vs.
407.60 ± 179.83 µg/L, correspondingly p = 0.030). Retinol was linearly related to gestational age
(Pearson’s rho = 0.84, p < 0.001) but the association did not remain significant after an adjustment for
birth weight (partial rho = 0.193, p = 0.316). α-tocopherol was nonlinearly associated with gestational
age (Spearman’s rho = 0.470, p = 0.044). The assessment of the vitamin status and potential deficiency
in neonates is crucial in order to appropriately support the nutritional needs of newborns.
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1. Introduction

The interest surrounding the effects of vitamins A and E in human health has signifi-
cantly increased in the context of their role as antioxidants [1,2]. Vitamin A is essential for
cellular growth and differentiation [3], lung development and alveoli formation [4], as well
as immune function [5]. Retinoic acid, can modulate gene expression through its binding
to responsive elements in the genome, including genes involved in antioxidant systems [6].

Vitamin E occurs in nature in several chemical forms (four tocopherols, α-,β-,γ- and δ-
and four tocotrienols, α-,β-,γ- and δ-). However, α-tocopherol represents ~90% of this vita-
min in humans [7]. Vitamin E has an antioxidant action by reducing lipid peroxidation [7].
Moreover, other properties have been attributed to vitamin E, such as neuroprotection,
reduction of inflammation, and anti-cancer activity [8]. In pregnancy, vitamin E is involved
in embryo development, placenta maturation, and defense against oxidative stress [9].

The role of vitamins A and E in the development of neonates is being studied, but
the data are relatively limited [9]. Low concentrations of vitamin A and E have been
documented in preterm infants [10,11], possibly showing that the accumulation of these
vitamins in the fetus mostly occurs in the last trimester of pregnancy [12]. However, not
all studies agree with this [13,14]. In parallel, preterm infants are at a deficiency risk for
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these vitamins, since fat storage is low, intake may be inadequate, malabsorption may
be present, and nutritional needs are high [15]. It is also noted that fat-soluble vitamins
require carrier systems (lipoproteins) [16] or specific carrier proteins [17] for solubility in
the blood. For example, α-tocopherol is mostly carried in low-density lipoprotein and
high-density lipoproteins [16], while retinoids are carried in chylomicrons, very low-density
lipoprotein particles and low-density lipoprotein particles [18]. In parallel, retinol binds to
retinol-binding protein, albumin, and other proteins, which may be low in malnourished
pregnant women [19]. The intestinal absorption of vitamins depends on the co-presence of
fat, as well as fat absorption [18,20].

Vitamins A and E cross the placenta by simple or facilitated diffusion [21]. The fe-
tus is unable to synthesize vitamins and relies on the placental delivery of retinol and
α-tocopherol. The accumulation of vitamins in the fetus takes place throughout pregnancy,
and especially during the third trimester, and depends on the maternal status. Therefore,
blood concentrations and body stores at birth may be lower in preterm infants of poorly
nourished mothers [22]. In fact, an improvement in neonatal vitamin A and E concentra-
tions can be achieved with a good nutritional status of the mother, while [23] the maternal
nutritional status can have an impact on birth weight [24].

Vitamin A deficiency has been connected to retinopathy of prematurity, bronchopul-
monary dysplasia, and chronic lung disease [5]. Indeed, the pathogenesis of retinopathy of
prematurity includes oxidative stress-related damage, which could be improved with the
antioxidant actions of vitamin A [25]. It is also noteworthy that, even in adults with lung
inflammatory disease, liver stores of vitamin A are depleted [26]. Moreover, the incidence
of an intraventricular hemorrhage is higher in infants a with low vitamin A liver status [27].
Vitamin A deficiency has also been connected to infant mortality [5]. In the same context,
animal studies have shown that severe vitamin A deficiency of the mother leads to early
fetal death [28].

Vitamin E deficiency has been connected to hemolytic anemia, bronchopulmonary
dysplasia, myopathy, edema, thrombocytosis, hemolytic anemia, and intraventricular
hemorrhage in infants [29,30]. In addition, cardiomyopathy may occur due to muscle
degeneration [22]. Additional effects of perinatal vitamin E deficiency have also been
proposed. For example, vitamin E deficiency has been shown to be implicated in neural
development and childhood cognition [1].

Oxidative stress is thought to be one of the common mechanisms for several patho-
logical conditions in preterm infants. Indeed, the process of childbirth per se is related to
an increase in the oxidative environment [31,32]. The fetus is transferred from a hypoxic
intrauterine environment (pO2 of 20–25 mm Hg) to an environment of high oxygen content
(pO2 of 100 mm Hg) and it is exposed to inhaled air [31,32]. This change results in greater
oxidative stress simply due to the existence of normal oxygen levels in the new extrauter-
ine environment [31]. In addition, the cell membranes of infants are more vulnerable to
oxidative stress since they have a higher content of polyunsaturated fatty acids. This fact
actually increases infantile vitamin E requirements [33].

The oxidative aggression suffered by the neonate is counteracted by the maturation of
effective antioxidant mechanisms. There are complex antioxidant defense systems against
the effects of oxygen free radicals on biological macromolecules, including both enzymatic
(superoxide dismutase, catalase, glutathione peroxidase, etc.) and nonenzymatic (vitamins
A, E, C, etc.) components [34]. In the case of a preterm neonate, both the adaptations to
physiological oxidative stress and the antioxidant defenses are reduced [31,35,36]. In this
scenario, the maternal–fetal transfer of antioxidant nutrients has not been completed in the
premature neonate, while some of the antioxidant enzymatic systems have not had time to
mature sufficiently [35,36]. For all these reasons, the preterm neonate is more vulnerable
to dysregulation of the antioxidant/prooxidant balance, and is more likely to suffer from
the “neonatal diseases from oxygen free radicals” [31]. In addition, it is also probable that
the prenatal and neonatal oxidative stress connect to other diseases in later life, such as
obesity [37].
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Given the deleterious effects of oxidative stress and the consequences of retinol and α-
tocopherol deficiency in preterm neonates, it is crucial to assess the status of these vitamins
as early as possible. In fact, early postnatal supplementation of vitamin A administered
to preterm infants improves their respiratory functions, but probably only in those with
low baseline levels of this vitamin [38]. This means that the determination of the vitamin
status at birth is important. Moreover, the relation of vitamins A and E and gestational age
is not clear [39,40]. Thus, the aim of this study was to assess the circulating α-tocopherol
and retinol in preterm infants at birth and investigate if they are related to gestational age.
To our knowledge, there are scarce data in Greece regarding the status of these vitamins in
preterm infants, and these data are also relatively old [41].

2. Materials and Methods
2.1. Study Design

This is a cross-sectional study including 30 preterm infants from the intensive care
unit at Iaso Hospital. The study protocol was approved by the Scientific Committee of Iaso
Hospital (number: A21112018). Mothers of infants signed an informed consent form in
order to participate in this study.

2.2. Participants

The study sample consisted of preterm neonates admitted to the neonatal intensive
care unit (NICU) of the “IASO” Maternity Hospital (May 2020 to September 2020). The
inclusion criteria were (a) gestational age 26–35 weeks and (b) parental consent for partici-
pation in this study. The exclusion criteria were (a) gestational diabetes or pre-eclampsia of
the mother, (b) congenital infections, (c) perinatal asphyxia, (d) major congenital anomalies,
and (e) no parental consent. The neonates had not received corticosteroids postnatally at
the time of measurements. It is noted that all mothers were of Greek nationality and lived
in Athens and near suburbs (Attiki area).

2.3. Anthropometric Measurements

Weight was measured on a digital scale with an accuracy of 0.005 Kg (Model AND
SK-WP 1–10 kg). Low birth weight was defined as weight <2500 g and very low birth
weight was defined as weight <1500 g, as suggested by the World Health Organization [42].
Small for gestational age (SGA) infants were determined as infants with weight at birth of
less than the 10th percentile for gestational age [43]. For this determination, gender-specific
reference charts of birth weight for gestational age of the World Health Organization were
used [43].

2.4. Biochemical Measurements

In this study, 3 mL samples of blood were collected in glass tubes one day after
birth of each infant. Blood samples were centrifuged (3000 rpm, 10 min), and sera were
removed and stored at −20 ◦C until analysis. The determination of retinol and α-tocopherol
was carried out simultaneously with high-performance liquid chromatography (HPLC)
(AGILENT, series number 1100 with constant flow pump) using a UV detector and a
reagent kit of Chromsystems. More particularly, an isocratic elution program was used; the
solvent flow was 1.5 mL/min, the column temperature was 25 ◦C, and the injection volume
was 50 µL. The UV detector was set at 325 and 295 nm. The retention time of retinol was
about 2.5 min and that of α-tocopherol was about 10 min. Thus, vitamin A was first eluted
and detected with the UV detector at 325 nm. At 3.5 min, the wavelength of the detector
was changed to 295 nm for the determination of α-tocopherol (at 10 min). The internal
standard had a seizure time of about 5 min.

The deficiency in retinol and α-tocopherol was defines according to the World Health
Organization criteria (retinol < 200 µg/L and α-tocopherol < 5.0 mg/L) [15].
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2.5. Statistical Analysis

The Kolmogorov–Smirnoff test was applied to test normality. Normally distributed
variables are shown as means ± standard deviation (SD), while non-normally distributed
variables are shown as medians and 25th–75th percentiles. Birth weight was logarithmized
to achieve normality. Absolute numbers and frequencies (%) are shown for categorical
variables. The t-test was applied for comparisons between normally distributed or log-
transformed continuous variables between two groups. The Chi-squared test was used
for group comparisons of categorical variables (i.e., males vs. females). Pearson’s rho
correlations and partial correlations adjusted for birth weight were applied between normal
or transformed variables. Moreover, Spearman’s correlations were applied to identify
potential nonlinear relationships between variables, as in the case of the associations of
α-tocopherol to birth weight and gestational age. p-values were based on two-sided tests.
The significance level was set at 5%. The statistical program used for analysis was SPSS
Statistics for Windows (version 22.0, IBM Corp: Armonk, NY, USA).

3. Results

In total, 30 preterm infants were studied (16 girls and 14 boys). The gestational age
ranged from 26 to 35 weeks. The birth weight and vitamin status of preterm infants are
shown in Table 1. As it is shown, the median birth weight was 1185 g, with 73% of infants
having a very low birth weight (<1500 g) and 100% of infants having low birth weight
(<2500 g). SGA infants represented 23.3% of the total sample. More particularly, 42.8% of
boys were SGA and only 6% of girls were SGA (p = 0.018). Means s± SD of serum retinol
and α-tocopherol were 392.0 ± 162.9 µg/L and 6.83 ± 3.02 mg/L, respectively. Ten percent
of neonates had a retinol deficiency and 20% of neonates had an α-tocopherol deficiency.
No sex differences were documented in the vitamin status.

Table 1. Weight and vitamin status of preterm neonates.

Total Sample
(n = 30)

Males
(n = 14)

Females
(n = 16) p-Value

Gestational age (weeks) 30.4 ± 2.55 30.6 ± 2.2 30.1 ± 2.8 0.628
Birth weight (g) † 1185 (1017–1535) 1185 (1017–1637) 1210 (1010–1502) 0.881

Low birth weight (%) * 100 100 100 NA
Very low birth weight (%) ** 73.3 71.4 75.0 0.574
Small for gestational age (%) 23.3 42.8 6 0.018

Retinol (µg/L) 392.0 ± 162.9 405.7 ± 148.7 380.0 ± 178.3 0.669
Retinol deficiency (n, %) § 3 (10%) 1 (7.1%) 2 (12.5%) 0.552
α-tocopherol (mg/L) 6.83 ± 3.02 6.63 ± 3.30 7.01 ± 2.85 0.742

α-tocopherol deficiency (n, %)
∫

6 (20%) 3 (21.4%) 3 (18.8%) 0.605
† Values were logarithmized prior to statistical comparisons. NA: not applicable; * low birth weight was defined
as weight < 2500 g; ** very low birth weight was defined as weight < 1500 g; § retinol deficiency was defined as
retinol < 200 µg/L [15];

∫
α-tocopherol deficiency was defined as α-tocopherol < 5.0 mg/L [15].

Furthermore, the vitamin status was compared between SGA infants and appropriate
for gestational age infants. Regarding retinol, its concentration was 340.85 ± 75.89 µg/L
and 407.60 ± 179.83 µg/L in SGA infants and appropriate for gestational age infants,
correspondingly (p = 0.030). α-tocopherol was not significantly different between SGA
infants (8.04 ± 2.64 mg/L) and appropriate for gestational age (6.46 ± 3.08 mg/L) infants
(p = 0.792).

In Table 2, Pearson’s correlations and weight-adjusted partial correlations are pre-
sented. It is noted that gestational age was highly correlated with birth weight (Pearson’s
rho = 0.914, p < 0.0001). Therefore, birth weight-adjusted correlations were also performed.
As can be seen, retinol was linearly correlated with gestational age, but the correlation was
not significant when birth weight was taken into account (Table 2). A nonlinear association
was detected between α-tocopherol and gestational age, as revealed through the use of
Spearman’s correlation (rho = 0.470, p = 0.044). Similarly, a nonlinear association was
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detected between α-tocopherol and birth weight (rho = 0.368, p = 0.046). These associations
were validated through a graphical representation, as demonstrated in Figure 1.

Table 2. Pearson’s correlations and partial correlations between serum retinol, α-tocopherol, weight
and gestational age.

Pearson’s Correlation Weight-Adjusted Correlation

Retinol (ng/L) α-Tocopherol (ng/L) Retinol (ng/L) α-Tocopherol (ng/L)

Gestational age (weeks) 0.845 (p < 0.001) 0.255 (p = 0.173) 0.193 (p= 0.316) 0.180 (p = 0.351) ‡

Birth weight (g) † 0.884 (p < 0.001) 0.201 (p = 0.286) ‡ NA NA
Retinol (µg/L) NA 0.273 (p = 0.144) NA −0.238 (p = 0.215)

α-tocopherol (mg/L) 0.070 (p = 0.715) NA −0.238 (p= 0.215) NA
† Values were logarithmized prior to statistical comparisons. ‡ Spearman’s correlation coefficient was 0.470
between α-tocopherol and gestational age (p = 0.044) and 0.368 between α-tocopherol and birthweight (p = 0.046);
NA: not applicable.
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In Figure 2, a scatter plot between α-tocopherol and retinol is presented in neonates
with a birth weight of >1500 g and neonates with a birth weight of <1500 g. As can be
seen, a positive association of the two vitamins is present in very low birth weight infants
(Spearman’s rho = 0.554, p = 0.007).
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4. Discussion

In this study, about 10% of preterm infants had a retinol deficiency and about 20%
of preterm infants had an α-tocopherol deficiency. SGA infants represented 23.3% of
the sample and had lower retinol levels. Moreover, this study documented a positive
relationship between gestational age and lipid-soluble antioxidant vitamins, which was
dependent on birth weight regarding retinol.

Although retinol cutoffs for defining a deficiency differ across studies, a retinol con-
centration of less than 200µg/mL was considered as a deficiency [15] in this and other
studies [11,40,44]. The retinol deficiency of infants in this study (10%) was lower than that
reported by others (42–82%) [11,45–47]. Moreover, SGA infants have been reported to have
low levels of retinol-binding protein [48], which is well correlated to serum retinol [49].
Both retinol and its binding protein in cord blood have been shown to increase after the
36th week [50]. It is also noted that birth weight is related to the mother’s status of vitamin
A [51]. In this study, neither the data on mothers’ nutrition nor the data on their vitamin
statuses were collected. It is most probable that the mothers in this study were not mal-
nourished because this study was conducted in a private hospital, which primarily hosts
mothers with higher incomes due to its nature. In other words, it can be hypothesized that
mothers had good nutritional statuses, which may also explain the relatively low presence
of retinol deficiency in this study.

Several studies have assessed vitamin E deficiency by using different cutoffs, such as
from <3.5 mmol/L to <11.6 mmol/L, which corresponds to <1.50 mg/L to 4.99 mg/L [9]. In
this study, a cutoff point of <5.0 mg/L was used to determine α-tocopherol deficiency [11],
and 20% of neonates were deemed deficient. Studies using a similar cutoff point have found
higher levels of deficiency, reaching 62% in the first 24 h of life without supplementation [52].
The study of Chan et al. documented that 38% of preterm infants were deficient, but their
study used a lower cutoff point [53]. As recently reviewed, vitamin E deficiency in neonates
ranges from 19% to 100% in newborns, reflecting a very high variability [9]. In addition,
there is no overall consensus on optimal α-tocopherol levels in preterm infants. The
ESPGHAN/ESPEN/ESPR/CSPEN propose that if α-tocopherol is 1–2 mg/L, treatment
should be initiated [54]. However, “the more the better” rule seems not to be applicable,
since the supplementation of preterm infants to achieve levels of >35 mg/dL (81 µmol/L)
is associated with an increased risk of sepsis [55]. Moreover, it has been shown that the
α-tocopherol in plasma and red blood cells gradually increases after the first month of birth
in very low birth weight infants [56].

Given that breast milk is the main nutritional source for infants, it is important to
define its content in retinol and α-tocopherol. The concentration of both vitamins was
lower in the breast milk of women having preterm birth versus those having a full-term
birth [57]. In absolute numbers, the concentration of colostrum in α-tocopherol was
about 250 µg/dL [58], 260 µg/dL [59], and 470 µg/dL [57] in Canadian, Russian, and
Mexican women with preterm birth, respectively, although higher values have also been
reported [60]. The concentration of colostrum in retinol has been reported to be 36 to
57.5 µg/dL, with a high standard deviation [57,61]. In the cases where donor milk was
given, the pasteurization destroyed the pathogenic bacteria, as well as the microbiota of
human milk [62]. Fat content [63] and fat-soluble vitamins are not changed after milk
pasteurization [64], although some data point to a reduction in retinol content after milk
processing [65] and a possible photosensitivity-related retinol reduction if transparent
vials are used [66]. In parallel, the freezing of human milk has no effect on its vitamin E
content [67,68].

The relatively low content of breast milk in the retinol and α-tocopherol of preterm
infants suggests that the supplementation of mothers and/or preterm infants with these
vitamins may be useful. However, fat-soluble vitamins are not easily excreted from the
body and tend to accumulate. Therefore, they can produce toxicity. This implies that
vitamins should be measured, and the supplementation of neonates should be performed
on a case-by-case basis. For example, the incidental supplementation of vitamin A in
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preterm neonates (by using multivitamins) was related to higher intakes of vitamin A
than recommended (for infants) [69]. Moreover, as already mentioned, high circulating
α-tocopherol is related to a risk of sepsis [55].

No sex differences were observed regarding the vitamin status in our study. This is in
line with the findings of other studies for retinol [40,45] and α-tocopherol [53]. It is noted
that male infants had a lower retinol concentration than females in another study [70];
however, after adjusting for birth weight and length, the difference was not significant [70].
This finding also underlines the importance of anthropometric variables in interpreting
serum retinol concentrations in infants.

SGA infants constituted only 23.3% of the neonates in the present sample. SGA infants
aim to maximize the chance of survival and preserve the function of central organs [71].
This often leads to a reduction in the supply of nutrients, a reduction in body fat stores and
nutrient depots, along with an alteration of physical and neurological characteristics [72].
In this study, SGA infants presented lower retinol levels. In the literature, SGA infants
have been shown to have low circulating retinol-binding protein [48], which is correlated
to serum retinol [49]. Moreover, the maternal retinol concentration during mid-pregnancy
has been related to the risk of giving birth to SGA infants, while maternal α-tocopherol
levels were not related to the birth of SGA infants [73]. Similarly, in our study, the levels of
α-tocopherol were not differentiated in SGA infants.

Gestational age and weight, in particular, were correlated to retinol and α-tocopherol
levels in our study. This observation may be explained through the following mechanisms:
(i) fat-soluble vitamins are deposited in larger quantities as adipose tissue increases and
(ii) vitamin A has an effect on growth and possibly on weight gain [3]. Indeed, infants with
normal vitamin A levels have been found gain weight more easily [11]. It is also possible
that higher oxidative stress present in preterm neonates may “consume” serum antioxi-
dants, such as retinol and α-tocopherol. Indeed, serum antioxidant capacity was positively
associated with birth weight in neonates with a wide range of weights (800–3700 g) [74].
Taterno et al. reported a correlation between vitamin E levels and birth weight, but they
did not include preterm infants [39]. Chan et al. found a weak but significant associa-
tion between vitamin E and gestational age [53], while the levels of vitamin E between
preterm and term infants were similar in other studies, but no correlation coefficient was
reported [13,14]. Liver content in retinol was correlated to gestational age in the fetuses
of Indian mothers [75]. In another study, no association was found between gestational
age and serum retinol, but blood was taken at 48 h after birth [40]. Similarly, the study of
Tao et al. found no association between retinol vs. birthweight and gestational age, but
cord blood was measured [45].

The positive association of vitamins E and A should be considered regarding lipid
solubility and shared metabolic pathways through lipoproteins [76]. For this reason, some
researchers “normalize” their results by dividing lipid-soluble vitamins with total lipids [32].
In addition, weight may influence this association, which is in line with the reports showing
that serum antioxidant capacity is positively associated with birth weight [74]. However,
an inverse correlation has been observed between serum retinol and α-tocopherol in the
colostrum of lactating women [77], suggesting that these vitamins may antagonize each
other and affect their bioavailability [78].

The strengths of this study is that it adds much knowledge to this field at a regional
level. The levels of α-tocopherol in our country have been previously reported to be around
2.0 to 2.5 mg/L in a smaller sample of preterm infants [41], which is much lower than
that the ones documented in this work. The comparability of our results with those from
other studies is limited since most studies have been conducted earlier. This means that
the previous detection methods may not be as sensitive as the current ones. For example,
in the study of Chan et al., the detection limit was 0.60 mg/L, and 14% of the samples
could not be detected [53]. Moreover, maternal diet and medical monitoring throughout
pregnancy are now more advanced. In addition, few studies have been conducted in
Europe [79]. Indeed, most studies have been conducted in participants from Asia, Africa,
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Brazil, and the US [9,47,75]. In this study, neonates had not received corticosteroids
after birth. This is particularly important for the interpretation of our findings, since
dexamethasone administration in preterm neonates for facilitating extubation has been
connected with a decrease in retinol levels for the first 7 days after birth and a subsequent
two-fold increase in retinol levels at ~1 month [80].

Several limitations should be considered along with the interpretation of our results.
Firstly, no data on delivery status were available and it is possible that a caesarian delivery
affects the status of fat-soluble vitamins [81]. However, not all studies agree on this, since
vitamin E levels in fetuses born with a caesarean section and vaginal delivery have also
been found to be similar [82]. Supplement use was not recorded in this work and this
is also the case for other studies on this topic, with some exceptions [79]. Moreover, no
data on mothers’ vitamin statuses were recorded. Indeed, a positive correlation has been
documented between maternal and cord levels of vitamins A and E [83]. This study also
lacked a control group of full-term infants, but the initial aim was to investigate the vitamin
statuses of preterm infants. There are no data on the nutritional support of neonates, but
blood samples were collected on their first day of life, so it is mostly improbable that
exogenous factors, such as nutrient delivery or breast milk delivery, have affected their
vitamin levels. Moreover, no measures of functionality are available, such as the Apgar
score. lastly, the serum concentrations of fat-soluble vitamins do not always reflect tissue
concentrations [84]. For example, the “gold standard” method for the assessment of vitamin
A status is the measurement of liver vitamin A depots [12]. Although retinol levels may
reflect the availability of the blood-carrying retinol-binding protein, blood concentrations
of retinol are the most frequently used biomarkers [85].

5. Conclusions

This study revealed a positive relationship between gestational age and lipid-soluble
antioxidant vitamins, i.e., retinol and α-tocopherol in preterm infants, which can be partially
explained by their weight differences. Further studies are needed to establish related
functional long-term outcomes in relation to the vitamin status of infants at birth.
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